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A Model to Calculate Atomic Spectra in Hot Plasmas*

A. Goldberg, B. F. Rozsnyai, and P. Thompson
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Abstract

An algorithm is presented for the detailed computation of transition
arrays in hot, partially ionized plasmas. The method is illustrated for
bromine plasma at temperatures and densities when partially filled L and

M shells occur.

*Work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under contract #W-7405-Eng-48.



I. Introduction

The proper accounting of the large number of spectral 1ine§ in hot,
partially ionized matter is important for opacities and also for plasma
diagnostics. E. Te]ler] first recognized the importance of line opacities
in hot matter, subsequently rediscovered by many other researchers. The
strong effect of dispersed line clusters on the Rosseland mean opacity o~
partially ionized gold was demonstrated by Nardi and Zinamon.2 A brief
quantitative illustration of the relative importance of line and continuus
opacities for iron plasma was also given by Rozsnyai.3 Theoretical
estimates for the degree of dispersion of line clusters due to the differant
angular momentum states of the many electron system were give by
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Moszkowski,4 and more recently in a series of reports by Bauche, et a].s .

Although the estimate of the degree of dispersion of lines due to the
different angular momentum states is important, a detailed accounting of lines
is necessary for accurate opacity calculations and also to predict expected
spectral patterns. Whether or not the line clusters actually merge into
continuous profiles depends on the physical line-broadening characteristicy of
the plasma, so that line broadening is an integral part of the spectroscopic
model. The main objective of this paper is to describe a computational
procedure for the accounting of large number of spectral lines in medium Z
plasmas at temperatures such that partial ionization occurs. Since the
computation problem is enormous, approximations are a practical necessity.
Presently we use first order perturbation theory for the computation of
spectroscopic terms in the LS coupling scheme. We present some calculations

for bromine plasma at temperatures and densities corresponding to partially



filled L and M shells. Also, for the present, we 1imit our model to
conditions of local thermodynamic equilibrium (LTE). In Section Il we present
the theoretical basis of our model and in Section III we present some

computational results.

II. Theory

The theoretical basis of our model is the utilization of the "average
atom" (AA) wave functions to compute the expectation values of our model
Hamiltonian. These expectation values are computed for eigenstates of the
L2 and S2 operators of the many electron system. The AA model, which is

the starting point of our computational procedure, is described by

8

Rozsnyai®, and in references given there; here we merely recall the

rudiments of that model.

The AA model assumes that the electronic levels in the plasma are

populated according to the Fermi statistics

dn1 = 9n1iexp-(eny-u)/kT]+1} -1 (1)

where a4 and 9,1 are the population and statistical weight of a single
particle level with energy en] and with quantum numbers n and 1, u is the
Fermi level and kT is the temperature in energy units. The electronic
potential is assumed to be spherically symmetric and the radial part of the

single particle wave functions satisfy Schrodinger's equation (in atomic units)

R''ny + R'p1/r +{2[en-V(r)1-1(141)/r2}Ryy = 0. (2)



In Eq. (2) the electronic potential is given by

_ 3, r'
Vir) = -z7e 4§ @3 2wy [o(n)] (3)
where Z stands for the charge of the nucleus and the electron density is given

by

o(r) =3  q, IR (r)1% . (4)

The last term in Eq. (3) stands for the exchange-correlation part,
approximated by a local potential which is a unique functional of the electron
density. In our model for VXC we adopt the formula of Hedin and

Lundqvist.9

It should be noted that in Eq. (4) the summation goes over all states,
including the continuum. Because of that, our model includes the screening
effect by the continuum electrons also. The actual computation technique to

account for the free electrons is described in Ref.S8.

For a given temperature the Fermi level p is determined by the

condition of charge neutrality

"
~N

[ o(r) rldr , (5)



where o stands for the ion sphere radius determined by the matter density.

Equations 1-5 give a complete self-consistent set of equations for the £A
model. Its shortcoming is that at finite temperature it predicts non-integer
occupation numbers for the electronic levels, making the physical state of the
AA fictitious. The usefulness of the AA model extends to the degree of its

usefulness as a statistical average.

We proceed by separating the electronic levels of the AA into core and
valence states. Core states are those for which 91 ™ 91 which is the
case for energy levels well below the Fermi level. Valence states are those
with fractional or near zero occupational numbers. We create concrete
physical electronic states involving the valence states in the following

manner:

First, we truncate the AA occupational numbers to their nearest integer
values, creating the "most probable atom". In contrast to the AA, the "most
probable" atom is not fictitious but a physically permissible specimen. Next,
we create different electronic configurations from the "most probable" atom by
promoting and demoting electrons in the valence levels. We also create
different charge states by increasing or decreasing the number of valance
electrons and repeat the same procedure. For each configuration we create all

2

the possible L and S states by diagonalizing the L™ and 52 operators.



Since we are faced with an enormous number of possible states we restrict
ourselves to those with appreciable probability. The procedure described
above is carried out for the "parent" and "daughter" configurations. Parent
and daughter configurations are distinguished by promoting an electron fron a
nl state to an upper n'l' state due to photoabsorption. A somewhat similar
calculational method has been given by Argo and Huebnev-,]O where the

energies of th LS states were not resolved, and also the configurational
energies utilized Slater integrals Z scaled for isolated ions. More recently

Goldberg and Rozsnyai]] gave results from a simplified version of the mode’

described in this paper where only the lower parent configurations were energy

resolved.

Our model Hamiltonian used for the computation of term energies and fcr

the probabilities of the parent states is given by

H=H +3 ] -~ (6)

]
i, Tij

with i and j covering the valence electrons only, and
Vg2 _L
Hyp= ) [~5- V" ==+ v (r)] . (7)
i j
The term VC in Eq. (7) stands for the "core" potential due to the charge

distribution of the core electrons, and is given by

pclr)

v.(r) =] a3 T+ Ve ()] (8)



with

](r)lz

pc(r) N Z gn] IRn

and the summation goes over to the core states. We compute the expectation
values of the Hamiltonian (6) for all parent and daughter states which are

2 and 2 operators. Since the Hamiltonian (6)

eigenstates of the L
involves the valence electrons only, the self energy of the core is
unaccounted . For the computation of transition energies between parent &nd
daughter states due to photoabsorption the core self-energy cancels out tc the

extent that core polarization is negligible.

We thus construct Tlinear combinations of Slater determinental wave
functions, the determinents comprised of the single particle orbitals for the
valence electrons. These linear combinations are chosen to simultaneously

diagonalize 12 - (251)2, 52 = (ZE].)2 and H [Eq. (6)], with the subspace

of one configuration, where of course the sums are taken over the valence
electrons only. This diagonalization is performed directly and does not
utilize tables of c.f.p.s, etc. This program is quite fast and presently can

treat configurations containing over 400 separate term values.

If we label the expectation value of the Hamiltonian (6) for a L S state
in a certain configuration o by E(L,S,a), then the probability of that
state under LTE condition is given by

E(L,S,a) - u Nv
P(L,S,a) = KG(L,S) exp { - T } (3)




where NV is the number of valence electrons in the configuration a. In

Eq. (9), G(L,S) is the statistical weight (2L+1)(25+1) and the constant K i3

determined by the normalization condition

Léa P(L,S,a) = 1

In Eg. (9) a stands for a particular configuration of the Nv valence

electrons distributed over the valence states.

Our aim is to account for all the lines of a cluster associated with 21
single electron transition of the type nl+n'1', where the members of a
cluster differ by belonging to different parent configurations and/or LS

states. The transition energy of a particular line is
E(L',S,a")-E(L,S,a) (10)

with the selection rule A L = 0,+1, a and a' differ in the occupation
number of the one electron states nl, n'l’' by one. To obtain the desired
spectra we computed all the relevant term energies and oscillator strengths
for all the transitions of the type in Eg. (10), together with the

probabilities of the parent states as given by Eqg. (9).

Since our model calculations are done in the LS coupling scheme, it may
not be adequate for medium or large Z plasmas when the spin-orbit interaction
becomes significant. For this reason we add the spin orbit interaction to the
transition energies given by Eq. (10) in the single-particle approximation by

the operator



dV(r

] -
H z _— (R:% s.) (1)
5.0~ 4m c 3 r i i

where the summation goes over all the valence electron coordinates and the
electron potential V(r) in Eq. (11) is the AA potential. This corresponds to
correcting the transition energies given by Eq. (10) with the single-electron
spin-orbit energy shifts of the AA model. In this approximation of the
spin-orbit interaction each spectral line breaks up into three (or two, if one
of the single electron sates is an s state), and, accordingly the oscillator

strengths must be multiplied by the factors a,b,c12 where

a:b:c = (242)(20+1):1:(R+1)(20+43) ' (12a)
for 2+%+1 transitions and
azb:c: = o(20-1):1:(R=1)(20+1) (12b)

for 2+2-1 Transitions.

The oscillator strengths and term energies are calculated using the AA
wave functions as the basis single particle set for our many-body
representation. In this sense our model is a first order perturbation

calculation using the self-consistent AA model as a start.

In order to obtain a meaningful spectroscopic result the bound-bound
oscillator strengths have to be supplied with reasonable line shape profiles

to compute frequency dependent absorption cross sections. In a real plasma
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the bound-bound cross sections are superimposed on the bound-free and
free-free, which are also to be taken into account. The computation of
spectrum profiles, bound-free and free-free processes is described by
Rozsnyain']6 and the reader is referred to the quoted references. In the

next Section we jllustrate our model by presenting some calculations for

bromine plasma.

III. Numerical Calculations

We illustrate the case of partially filled L-shells for the bromine
plasma at density S.IO-Zg/cc and at temperatures kT = 280 and 350 eV,
respectively. In the first case the AA model predicts an almost filled
L-shell and in the second case a half-filled L-shell. In our detailed
spectroscopic accounting in the first case we calculated 15 parent LS statas
from nitrogen -like to neon- like ions with neon-1ike and fluorine- like ions
having the largest probabilities, as illustrated in Table I. In the second
case the number of parent LS states were 41 going from berrylium-like to
fluorine-like ions with the probability distribution peeking at the nitrogen-
like states. We accounted for all the n = 23 and 2+4 transition arrays
which before the spin-orbit splitting gave us 404 lines for the first case and
840 for the second. After taking into account the spin-orbit interaction in
the single-particle approximation as described above, having supplied the
lines with reasonable line-shape profiles and having computed the bound-free
and free-free absorption cross-sections, as described in Refs.11-14, we
computed the total photoabsorption cross section for the plasma, with resit1ts
shown in Figs. 1 and 2. We also predict the emission spectrum from an
optically thin plasma by taking the simplest solution of the radiative

transfer equation
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I(v) = B{v) { 1 - exp [o(v)eL]} (13)

where I(v) is the intensity of the emerging radiation, B(v ) is the Planck
function, o(v) the frequency dependent photoabsorption cross section, as
indicated in Figs. 1-2, p is the matter density and L is the thickness of

the sample through which the radiation must pass before emerging. The results
of these calculations are shown in Figs. 3 and 4 on the linear scale to

compare our data with experimental measurements.

At present no experiments are known to the authors for LTE plasmas. In
the case of laser or electron-beam produced plasmas only the free electrons,
which are usually Maxwellian, have the property of a temperature, and the
bound electrons within the ions are distributed according to the
collision-radiative rate eguations. Therefore, it is rather difficult to
correlate our LTE model with the available experimental data. Nevertheless we
attempt to do that by chosing the temperature-density conditions so that the
LTE distribution of the different ionic species is close to those of the
non-LTE experimental conditions. In Fig. 5 we show the experimental
measurements of Bailey, et al.]7 for laser produced bromine plasma. The
free-electron density and temperature were estimated as 1022 cm'3 and
500 eV, respectively, and the plasma is mainly neon-like and optically thin.
To mimic these conditions with our LTE model we chose the same electron
density, corresponding to 5.10'2 g/cc matter density, and to make the plasma
mainly neon and fluorine-like, we took the temperature as 280 eV. For the
sample thickness L we chose 3.5 10’4cm which corresponds to the experimental

conditions. A comparison of Figs.3 and 5 shows that the calculated strong

lines have about the same wavelengths as those in the experiment, while the
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strength ratios seem to be different. This difference is not surprising in
view of the difference between LTE and non-LTE conditions. Presently we have
no experimental data to compare our calculations for 350 eV corresponding to
Figs. 2 and 4. The results at 350 eV temperature are given only to illustrate

the effect of the increasing number of spectral lines.

We show some of the spectroscopic details in Table I and in Figs. 6 and
7. Table I shows the 15 parent states with their probabilities for the 280 €V
calculation of the bromine plasma. From these parent states we included all
the n = 2-3 and 2-4 arrays. For the 2p-3d array we show the oscillator
strengths multiplied with the probability of the respective parent states in

Fig. 6. In Fig. 7 we show the same as in Fig. 6 at 350 eV temperature.

In Tables II and III we compare briefly the data predicted by the AA
model with those of our detailed spectroscopic accounting. In column 2 the
transition energy E(aa) is simply the difference of the single particle energy
levels as predicted by the self-consistent AA model. 1In column 3 E(a) is the

average transition energy of a nl-n'l1' array given by

AE ovnigi(3) = aEa'P(a)f(wa JOE (e ) o v (a) (14)
where the summation goes over all the parent LS states labelled by a and
over all the daughter LS states labelled by a' which differ from the parent
states by changing one electron from an nl to an n'1"' single particle state.

In Eq. (14) P(a) is the probability of the parent state, f(a*a') is the
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oscillator strength of the transition and AE is the energy difference. The

last term in Eg. (14) is the average oscillator strength for an nl-n'l'

transition array given by

fgonig: (3)° ) ' P(a)f (ara') (15)
aa
and are shown in column 7 in Tables II and III. The oscillator strength for

an nk-n'L' transition predicted by the AA model is given by

£
.2 > a0t ) 2
fn£+n'l' (aa) = §'AEn2+u'£'(aa) 9.1 23T ID{ng>n'L ') (16)

where An) is the occupation number of the shell nl as given by Eq. (1) and D
stands for the dipole radial integral. The AA oscillator strengths are shown
in columns 7 in Tables II and III. It should be noted that we use the same
dipole radial integrals needed for the AA and detailed LS oscillator strengtns
by using the AA radial wave functions, so the difference between the f(aa) and
f(a) quantities is due to the statistics only. In columns 5 and 6 we also
give the second and third momemnts of the distribution of lines within an

array by using the formula for the k th moments

s(ng>n'2') = T P(a)[AE(aa') - AF (a)J¢ x f;“‘m,l, (a) . (17)

+ll
a,a nd+n'g



14

The fact that the third moments are not small indicates that the line

distributions are not symmetric around the average as in a simple Gaussian

model.

At kT = 60 eV, the dominant parent configurations all have partially
filled M-shells, and at density = 5.10—29/cc, 34 parent configurations have
significant probability. The two most probable initial configurations are
[Ne](352)(3p6)(3d5) and [Ne](352)(3p5)(3d4). Figures 8 and 9
exhibit the transition arrays generated by promoting an electron in these
configurations from the 3d to the 4f level. These arrays contain respectively
438 and 5523 line transitions and they are by no means the largest that need
to be treated. Inclusion of all parent configurations and all parent LS
states, as was done for the L-shell spectra, simply exceeds our computational
ability. One might consider modeling these transition arrays using the first
three moments give by Refs. 5-7. Figures 8 and 9 indicate, however, that
these arrays are characterized by a broad almost continuous background of many
lines, but upon which is superposed a discrete structure of relatively few
intense lines. Since there is no a priori procedure to determine the
positions and strengths of these intense lines, there remains no recourse to

the prediction of these arrays other than brute force computation.

In summary, the algorithm described in this paper is easily applicable to
LTE spectra for partially filled L-shells (and of course, K-shells), while for
M-shells and above, the procedure becomes lengthy and laborious. We are aware
that LTE conditions are difficult to achieve in laboratory conditions;
nevertheless, it is hoped that spectroscopic data from LTE plasmas will become

available for comparison with theoretical predictions.
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Table I. List of parent states and probabilities in bromine plasma at kT =
280 eV and at p = 5.10 %g/cc.

State Probability
[Ne] 3.507(-1)
[Hel(2s') (2p®)2s 6.932(-2)
[He](2s%) (2p°) 2P 3.995(-1)
[He](2s') (2p°)1P 1.089(-2)
[Hel(2s')(2p°)3P 3.943(-2)
[He](2s2) (2p%)15 6.528(-3)
[He](2s?) (2p)3p 6.897(-2)
[He](2s%) (2p%)1D 3.594(-2)
[He](2s')(2p?)2p 1.518(-3)
[He](2s')(2p%)25 5.205(-4)
[Hel(2s')(2p*)ap 4.029(-3)
[He](2s') (2p?)2D 2.865(-3)
[He](2s%) (2p3)2p 2.732(-3)
[He](2s%) (2p3)2D 4.855(-3)
[Hel(2s?) (2p3)as 2.139(-3)
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Table II. Energies, variances in eV and oscillator strengths for transition
arrays in bromine plasma at kT = 280 eV and at p = 5.10'29/cc.
Array AE(aa) AE(a) [AZ]”2 [A3]]/3 f(aa) f(a)
2s-3p 1.841(3) 1.873(3) 4.381(1) 4.132(1) 5.744(-1) 6.287(-1)
2s5-4p 2.362(3) 2.409(3) 6.576(1) 5.808(1) 1.549(-1) 1.665(-1)
2p-3s 1.630(3) 1.646(3) 5.434(1) 4.667(1) 8.405(-2) 8.738(-2)
2p-3d 1.748(3) 1.780(3) 4.622(1) 4.051(1) 2.964 3.233
2p-4s 2.182(3) 2.212(3) 7.442(1) 6.337(1) 1.909(-2) 1.962(-2)
2p-4d 2.228(3) 2.265(3) 7.353(1) 6.326(1) 6.416(-1) 6.862(-1)
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Table III. Energies, variances in eV and oscillator strengths for transition
arrays in bromine plasma at kT = 350 eV and at p = 5.10'29/cc.
Array  AE(aa) aE(a) 2812 33 f(aa) f(a)
2s~-3p 1.949(3) 1.964(3) 6.024(1) 3.022(1) 4.757(-1) 5.163(-1)
2s-4p 2.536(3) 2.565(3) 9.065(1) 4.131(1) 1.253(-1) 1.345(-1)
2p-3s 1.768(3) 1.774(3) 8.162(1) 4.044(1) 5.641(-2) 5.172(-2)
2p-3d 1.867(3) 1.881(3) 6.308(1) 2.543(1) 2.213 2.364
2p-4s 2.381(3) 2.401(3) 1.119(2) 5.331(1) 1.338(-2) 1.224(-2)
2p-4d 2.420(3) 2.443(3) 1.020(2) 4.225(1) 4.580(-1) 4,.835(-1)
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Figure Captions

Computer output of photoabsorption cross section in units of
cm /g versusphoton energy in eV of bromine at kT = 280 eV
temperature and at p = 5.10~2 g/cc density.

Same as Fig. 1 at kT = 350 eV temperature.

Estimated emission intensity versus wavelength of bromine

plasma corresponding to the temperature-density conditions of
Fig. 1 and sample thickness of 3.5 10~% cm.

Same as Fig. 3, but corresponding to the temperature-density
condition of Fig. 2.

Experimental measurement of emission from neon-like and
fluorine-1ike bromine plasma as taken from Ref. 17.

Computer output for the weighted oscillator strengths for the
2p-3d array of bromine plasma corresponding to the
temperature-density condition of Fig. 1. The total number of
2p-3d lines is 86.

Same as Fig. 6., but corresponding to the temperature density
condition of Fig. 2. The total number of 2p-3d lines is 184.

Array of oscillator strengths for the 3d-4f single electron
transitions from the [Ne]{3s2)(3p°)(3d%) parent
configuration for bromine plasma at p = 5.10-2 g/cc and at
kT = 60 eV temperature.

Same as Fig. 8 from the [Ne](3s2)(3p6)(3d>) parent
configuration.
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